データシート

SANS 2025 検知と対応に関する調査

死角、自動化のギャップ、そしてAI強化型防衛への移行

今年のSANS検知・対応調査は、逼迫したセキュリティ環境を明らかにしている。 

  • エンドポイントにおけるEDRへの過度の依存が新たな死角を生み出している。  
  • 自動化は拡大を続けているが、完全な信頼は依然として低い。  
  • SOCチームは、誤検知の増加、スキル不足、規制強化に直面している。 

なぜ検知はキルチェーンのより早い段階で実施されなければならないのか、どのタイプの行動分析を導入すべきか、そしてAIがアナリストを代替するのではなく補完すべき理由を明らかにする。 

このレポートを共有する

主な調査結果

SANS 2025のデータは、エンドポイント中心のセキュリティ対策、複雑性の増大、
、および不十分な情報共有によって生じる拡大するギャップを明らかにしている。

89%

EDRは依然として万能ツールである

エンドポイントへの過度な注力は境界防御とクラウド侵入をほぼ無防備な状態に置き、
侵害後の検知に空白を生じさせる。

73%

偽陽性が増加している

偽陽性により、人員不足に苦しむSOCチームはさらに追い詰められる。

13%

完全自動化の採用が減少 

自動検出ツールを使用しているのは90%に上るにもかかわらず、完全自動応答を信頼しているのはごく一部に過ぎない。

Endpoint 死角

EDRは悪意のあるファイルがエンドポイントに到達した後にのみ可視性を提供します。組織は境界、クラウド、ファイル移動経路全体における初期段階の脅威を見逃しています。

高い採用率、
低い実現度

SOCチームは、ツールが人間のワークフローに統合されないため、自動化に自信を持てないことが多い。効果的な自動化は、判断を置き換えるのではなく、判断を豊かにし、関連付け、優先順位付けするものでなければならない。

規制圧力による協業の転換

NIS2やDORAが組織に対しインシデントやIOCの共有を義務付ける中、検出ルールを外部と共有しているのはわずか37%に留まる。

このレポートが重要な理由

調査により、SOC能力を進化させるために必要なアーキテクチャの変更が明らかになりました。
検知パイプラインの近代化が必要な箇所と、精度を向上させながら作業負荷を軽減する方法を理解しましょう。

アナリストは
、ノイズに追い越される

チームは行動ベースのサンドボックス化と機械学習による脅威類似性検索を採用しなければならない。

複雑性は専門知識よりも速く
を拡大する

マルチクラウドの断片化と統合ギャップがセキュリティに与える影響を発見する

AIは
の人間的才能を増強しなければならない

セキュリティチームには、自然言語クエリ、IOCの自動抽出、および類似性に基づく脅威相関分析が求められます。

検知戦略を強化する

SANS調査レポートの全文を入手し、死角を減らし、アナリストのキャパシティを拡張し、多層検知パイプラインを導入する方法について学びましょう。